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Abstract— This paper presents a computationally attractive
nonlinear model predictive control approach for the class of
continuous time Lure systems. The control law is obtained via
the repeated solution of an efficient to solve convex optimization
problem based on linear matrix inequalities (LMIs). Closed-
loop stability and satisfaction of input and state constraints are
guaranteed by the feasibility of the LMIs at initial time. The
simulation of a flexible link robotic arm shows the applicability
and effectiveness of the proposed controller.

I. INTRODUCTION

Nonlinear model predictive control (NMPC) has received
remarkable attention in the last 15 years. Its ability to deal
with nonlinear control systems subject to state and input
constraints makes NMPC attractive for both practical appli-
cations and theoretical research. The basic idea of standard
NMPC is as follows: By solving online an optimal control
problem based on the current measurement of the system
states, an optimal input trajectory is obtained. The first part
of this trajectory is applied to the system and the optimal
control problem is solved again based on a new measurement
of the system states at the next sampling instant. By now,
various NMPC schemes with guaranteed stability have been
developed [1, 4, 5, 7, 8, 10, 13]. However, many of those ap-
proaches suffer from two problems. Firstly, since nonlinear
systems and possibly nonlinear constraints are considered,
the optimization problem may be non-convex. Thus, the
solution delivered by standard numerical solvers may only
represent a local minima but not a global one, which can
lead to a decrease in performance or even instability in
the robust case. Secondly, the solution to the optimization
problem often is not a state feedback law but an optimal
open-loop input trajectory. The application of those open-
loop trajectories in the way of standard NMPC schemes as
e.g. [5, 7, 8, 13] imply that feedback (and therefore reaction
on disturbances) is provided only at the sampling instants.
However, in the time interval between the sampling instants
the system is controlled open-loop. This requires rather short
sampling intervals to counteract disturbances which may lead
to computational difficulties since the optimization problem
cannot be solved fast enough. The goal of this paper is to
derive an NMPC method which overcomes these problems
for the class of continuous time Lure systems. As in [2]
and [12] the basic idea is to calculate at each sampling instant
a stabilizing linear time-invariant feedback matrix via the
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solution of a convex optimization problem based on LMIs
such that an upper bound on the considered infinite horizon
cost functional is minimized. The obtained LMI conditions
are similar to those derived in [1], where they are used to
calculate a stabilizing terminal region and terminal penalty
term. Since the approach is based on a convex optimization
problem it is guaranteed that a global solution is obtained. As
shown, the control strategy leads to closed-loop stability and
constraint satisfaction for the set of Lure systems satisfying
a sector bound on their nonlinearities. The controller is
robustly stabilizing in the sense that the Lure nonlinearities
can change as long as they stay sector bounded. Furthermore,
the application of the feedback matrix to the system allows
rather long sampling intervals since the system is controlled
by a stabilizing feedback controller in the time interval
between the sampling instants, in contrast to standard NMPC
approaches [5, 7, 8, 13]. This makes the presented controller
attractive from a computational, and thus applicational, point
of view. In [14] a similar model predictive control technique
has been used for the control of singular systems.
The paper is organized as follows: In Section II we discuss
the considered NMPC setup and give a brief introduction
to the class of Lure systems. We focus on two types of
Lure systems which differ by the sector conditions their
nonlinearities satisfy. Section III provides the main result of
the paper, namely two stabilizing NMPC controllers based
on convex optimization with guaranteed closed-loop stability
and satisfaction of state and input constraints for both types
of Lure systems. The presented approaches differ in aspects
of applicability on one side and solvability on the other
side. The simulation example of a flexible link robotic arm
illustrates the obtained results in Section IV. Conclusions are
provided in Section V.

II. PROBLEM SETUP

In the first part of this section we give a brief introduction
to the considered class of Lure systems. The second part
discusses the control task and introduces the infinite horizon
cost functional which is of interest in the NMPC controller
design.

A. Lure Systems

In this paper we consider a subclass of nonlinear systems,
namely Lure systems, which are described by

ẋ = Ax+Gγ(z)+Bu, (1a)

z = Hx, (1b)

(see e.g. [11]), where A ∈ R
n×n, B ∈ R

n×m, G ∈ R
n×p and

H ∈ R
p×n are constant linear matrices and z ∈ R

p denotes a
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linear combination of the states. The vector γ(z) : Rp → R
p

consists of p nonlinear functions depending on z. We limit
our attention to Lure systems where z and the nonlinearities
γ(z) satisfy a so called sector condition of the form

(

β z− γ(z)
)T

γ(z) ≥ 0, (2)

where β = diag(β1,β2, . . . ,βp) with βi ∈ R
+, i = 1, . . . , p,

see [11]. Figure 1 illustrates the sector condition for p =
1. If the constants βi are not bounded, i.e. βi ∈ [0,∞), the
nonlinearities γ(z) lie in the complete first and third quadrant.
In this case the sector condition (2) can be formulated as

zT γ(z) ≥ 0. (3)

Lure systems satisfying sector condition (2) possess more
restricted nonlinearities compared to systems with sector
condition (3). In the following we refer to (2) as growth
bounded sector condition and to (3) as full sector condition.
In this paper two NMPC approaches based on the online
solution of a convex optimization problem subject to LMIs
are derived. The first approach is applicable to Lure systems
satisfying the growth bounded sector condition, the second
one to systems with full sector condition. The LMIs of the
first approach are less conservative. However, the second
controller can be applied to a broader system class since
the restrictions on the nonlinearities are weaker.

B. Control Task

The control task considered is to stabilize the origin of (1)
such that polytopic state and input constraints of the form

C =

{[

x

u

]

∈ R
n+m : cix+diu≤ 1, i= 1, · · · ,r

}

(4)

are satisfied. For the solution of this task we propose the use
of NMPC. At each sampling instant tk the NMPC controller
minimizes the infinite horizon cost functional

J
(

x(·),u(·)
)

=
∫ ∞

tk

xT (τ)Qx(τ)+uT (τ)Ru(τ) dτ (5)

with the positive definite weighting matrices Q ∈ R
n×n and

R ∈ R
m×m, subject to the constraints (4) and the system

dynamics (1). Due to the infinite horizon, the resulting
optimization problem is in general not solvable. Therefore,
in standard NMPC approaches a large but finite prediction
horizon is chosen instead in order to obtain a satisfying
approximation of the infinite horizon cost. By numerical
solvers the resulting finite horizon optimal control problem
is solved repeatedly to obtain the optimal input. However, to

z

γ(z)

βz

Fig. 1. Sector condition of Lure systems.

calculate the optimal open-loop input trajectory, often still
high computational effort is necessary. Furthermore, since we
consider nonlinear systems the optimization problem might
be non-convex. To overcome these problems, the basic idea
of this paper is to calculate at each sampling instant tk a
feedback matrix Kk instead of a complete input trajectory.
Thus, the resulting input applied to system (1) is of the form

u(t) = Kkx(t), t ∈ [tk, tk+1). (6)

Here, tk and tk+1 denote consecutive sampling instants at
which the optimal control problem is solved. Following
the ideas of [2] and [12], the feedback matrix Kk is cal-
culated such that an upper bound on the infinite horizon
cost functional (5) is minimized at each sampling instant tk
via the solution of a convex optimization problem based
on LMIs. This method offers several advantages compared
to standard NMPC approaches. First, the considered opti-
mization problem is convex. Thus, it is guaranteed that a
global minima is obtained if the optimization problem is
feasible. Moreover, the solution to the optimization problem
can be obtained significantly faster. As a further advantage,
the application of the feedback matrix Kk allows that the
sampling interval δ = tk+1− tk can be chosen larger than in
standard NMPC, since the system is controlled in closed-
loop also between the sampling instants. This makes the
proposed method appealing and suitable also for systems
with rather small time constants. Finally, the novel controller
robustly stabilizes the considered system if the nonlinearities
are only known to be sector bounded, whereas classical
NMPC approaches need exact knowledge about the nonlinear
dynamics in order to predict the system behaviour.
In the following section we present the main result of this
paper, namely two NMPC controllers based on a convex
optimization problem involving LMIs. The first controller
is applicable to Lure systems satisfying a growth bounded
sector condition (2), the second one to Lure systems with
full sector condition (3).

III. MAIN RESULTS

The two controllers derived in this section rely on the
following Lemma to guarantee satisfaction of state and input
constraints as defined in (4).

Lemma 1: The ellipsoid D = {y ∈ R
n : yTFy ≤ μ} is

contained in the set W = {y ∈ R
n : wiy ≤ 1, i = 1, . . . ,r},

where F ∈ R
n×n and wi ∈ R

1×n, if and only if

wi(μF−1)wTi ≤ 1, i= 1, . . . ,r. (7)

Proof: See [3] and [6].

A. Lure systems with growth bounded sector condition

In the following we consider Lure systems satisfying
the growth bounded sector condition (2). As illustrated in
Figure 1 the nonlinearities lie in the first and third quadrant
but are growth bounded. Inequality (2) can be expressed in
matrix form by

[

x

γ

]T [

0 − 1
2H

TβT

− 1
2βH I

][

x

γ

]

≤ 0. (8)
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The following lemma provides a condition to calculate a
stabilizing feedback law for system (1) with sector condi-
tion (2) and an upper bound on the infinite horizon cost
functional (5).

Lemma 2: Consider the system (1) with the growth
bounded sector condition (8). Suppose that there exist matri-
ces 0< Λ = ΛT ∈R

n×n and Γ ∈R
m×n, and constants τ ∈R

+

and α ∈ R
+ such that the matrix inequality

⎡

⎢

⎢

⎢

⎣

−Δ−ΔT −S ΛQ
1
2 ΓTR

1
2

−ST ατI 0 0

Q
1
2Λ 0 αI 0

R
1
2Γ 0 0 αI

⎤

⎥

⎥

⎥

⎦

> 0 (9)

is satisfied with Δ = [A B][Λ ΓT ]T and S= Gα + τ
2ΛHTβT .

Then for P= αΛ−1 and K = ΓΛ−1 the following holds:

a. The feedback law u = Kx asymptotically stabilizes
system (1) with sector condition (2).

b. V̄ = xT (t)Px(t) is an upper bound on the infinite
horizon cost functional at time t, where x(t) is the
state of system (1) at time t.

Proof: Applying the Schur complement to (9), substi-

tuting Λ, Γ, S and Δ as defined in the lemma and multiplying
the obtained inequality from both sides with diag(P, I), we
know that the inequality

⎡

⎣

[

ATP+PA+KTBTP
+PBK+Q+KTRK

]

PG+ τ
2H

TβT

GTP+ τ
2βH −τI

⎤

⎦ < 0 (10)

is satisfied. Applying theS -procedure, see e.g. [3], it follows

that

[

x

γ

]T

⎡

⎣

[

ATP+PA+KTBTP
+PBK+Q+KTRK

]

PG

GTP 0

⎤

⎦

[

x

γ

]

< 0 (11)

holds for all x and γ satisfying (8). This is equivalent to

xT (ATP+PA+KTBTP+PBK+Q+KTRK)x +

xPGγ(z)+ γT (z)GTPx < 0. (12)

With V (x) = xTPx> 0, Q> 0 and R> 0 we know that

V̇ (x) = xT (ATP+PA+KTBTP+PBK)x +

xTPGγ(z)+ γT (z)GTPx < 0 (13)

is satisfied. Thus, clearly V (x) = xTPx is a Lyapunov func-
tion and the control law u = Kx asymptotically stabilizes

system (1), which proofs part (a) of Lemma 2.

Integrating inequality (12) from τ = t to τ → ∞, with u=Kx
(leading to x(t) = 0 for t→ ∞) we obtain

V̄ = xT (t)Px(t) >

∫ ∞

t
xT (τ)Qx(τ)+uT (τ)Ru(τ)dτ. (14)

Thus, V̄ is an upper bound on the infinite horizon cost

functional (5), which proofs part (b) of the lemma.

Note that so far no constraint satisfaction is guaranteed.
Furthermore, the controller might be quite conservative if
the system is far away from the origin. To guarantee less

conservativeness we propose to calculate the feedback matrix
repeatedly at the sampling instants tk. Therefore, in the
following the index k describes the association of matrices,
optimization variables, functions etc. with the time instant tk.
Using the results of Lemma 2 in the following theorem we
propose an NMPC controller with guaranteed stability and
constraint satisfaction that minimizes an upper bound on the
cost functional (5) at each recalculation time instant tk.

Theorem 1: Consider the system (1) with the growth
bounded sector condition (8). The NMPC controller given
by the repeated solution of the optimization problem

min
αk,Λk,Γk

αk (15a)

subject to
[

1 xT (tk)
x(tk) Λk

]

> 0, (15b)

⎡

⎢

⎢

⎢

⎣

−Δk−ΔTk −Sk ΛkQ
1
2 ΓTk R

1
2

−STk αkτI 0 0

Q
1
2Λk 0 αkI 0

R
1
2Γk 0 0 αkI

⎤

⎥

⎥

⎥

⎦

> 0, (15c)

[

1 ciΛk+diΓk
(ciΛk+diΓk)

T Λk

]

≥ 0, (15d)

i= 1, . . . ,r,

at the sampling instants tk based on the state x(tk), with Pk =
αkΛ

−1
k and Kk = ΓkΛ

−1
k has the following properties:

a. The optimization problem (15) is convex if τ is fixed.
Furthermore, it is feasible at the sampling instant tk+1
if it is feasible at tk.

b. The solution to the optimization problem (15) mini-
mizes the upper bound V̄k = xT (tk)Pkx(tk) on the cost
functional (5) at each sampling instant tk.

c. If the optimization problem (15) is feasible at t0 = 0,
the control law

u(t) = Kkx(t), t ∈ [tk, tk+1), (16)

asymptotically stabilizes the origin of the system (1)
with the growth bounded sector condition (8), and
the input and state constraints (4) are satisfied for all
times t ≥ 0.

Proof: The proof is divided into three parts establishing

the properties (a)-(c).

Part(a): If τ is fixed, inequalities (15b)-(15d) are LMIs and
therefore convexity of the optimization problem (15) follows

trivially. Since only (15b) depends on x(tk), clearly the
solution to the optimization problem (15) at the sampling

instant tk also satisfies the LMIs (15c) and (15d) at the

sampling instant tk+1. Furthermore, (15c) is identical to (9)

in Lemma 2. Therefore, it follows from (13) that

xT (tk+1)Pkx(tk+1) < xT (tk)Pkx(tk). (17)

Applying the Schur complement to (15b), substituting Λk,
and combining the obtained inequality with (17), it follows
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that the inequality

xT (tk+1)Pkx(tk+1) < xT (tk)Pkx(tk) < αk (18)

is satisfied for all tk. Thus, the solution to the optimization

problem at the sampling instant tk also satisfies condi-

tion (15b) at the sampling instant tk+1. By induction it

follows that feasibility at t0= 0 implies feasibility at all future
sampling instants.

Part (b): From Lemma 2 we know that V̄k = xT (tk)Pkx(tk) is
an upper bound on the cost functional (5). It follows from

the proof of part (a) that

V̄k = xT (tk)Pkx(tk) < αk. (19)

Thus, minimizing αk implies the minimization of the upper
bound V̄k, see [2, 12] for details.

Part (c): In order to show stability we consider the can-

didate jump Lyapunov functional Vk(x) = xTPkx, where Pk
is recalculated at each sampling instant tk. From the proof

of Lemma 2 it follows that the application of the control

law (16) leads to V̇k < 0 ∀ t ∈ [tk, tk+1). If it can be shown
that furthermore at the sampling instants

Vk+1

(

x(tk+1)
)

≤ Vk

(

x(tk+1)
)

(20)

is satisfied, Lyapunov stability of the system (1) can be

deduced. We know from the proof of part (a) that the solution

to the optimization problem at tk is a feasible, however in

general suboptimal, solution at tk+1. Thus, it follows that

xT (tk+1)Pk+1x(tk+1) ≤ x
T (tk+1)Pkx(tk+1) (21)

is satisfied at each sampling instant tk+1, which is equivalent

to (20). To conclude the proof, it remains to establish the

constraint satisfaction. Substituting the feedback control law

u= Kkx in (4) we obtain the constraint set

Ck =
{

x ∈ R
n : (ci+diKk)x≤ 1, i= 1 . . . ,r

}

, (22)

which due to the state feedback in the control law only

depends on the system state x. We now show that the ellipsoid

Ek =
{

x ∈ R
n : xTPkx≤ αk

}

(23)

lies in the constraint set (22) at the sampling instant tk and

moreover is an invariant set under the control law (16).

Applying the Schur complement to (15d) and substituting Pk,

Kk and αk as defined in the theorem, we obtain

1− (ci+diKk)P
−1
k αk(ci+diKk)

T ≥ 0, i= 1, . . . ,r. (24)

Thus, using Lemma 1 it follows from (15d) that the ellip-

soid Ek is contained in the constraint set (22). Consequently,

all states lying in the ellipsoid satisfy state and input

constraints. Clearly, since (19) holds, the system state x(tk)
lies in the ellipsoid at time instant tk. Therefore, with the

matrix Pk being constant in the time interval t ∈ [tk, tk+1),
state and input constraints are satisfied in this interval if the

ellipsoid Ek is an invariant set under the control law (16).

From the proof of Lemma 2 we know that Vk = xTPkx is a

Lyapunov function for system (1). From this follows that the

inequality

xT (t)Pkx(t) < xT (tk)Pkx(tk) < αk (25)

is satisfied for each t ∈ (tk, tk+1). Therefore, all states in
the time interval [tk, tk+1) lie in the ellipsoid Ek, which

guarantees satisfaction of state and input constraints. Since

this can be shown for each sampling instant tk, it follows that

the control law (16) is such that the constraints are satisfied

for all times t ≥ 0.

Inequality (15c) is only an LMI if τ is considered fixed
and not as an optimization variable. Although a reasonable
fixed value for τ can be determined off-line, this increases
the conservativeness of the presented NMPC approach, with
drawbacks concerning feasibility and performance. However,
numerous simulations suggest that the NMPC controller and
the resulting performance is only weakly sensitive towards τ .
Nevertheless, it is reasonable to discuss solutions which
overcome this problem. In the following subsection we
present a second NMPC approach for Lure systems with a
less restrictive sector condition.

B. Lure systems with full sector condition

The approach presented in this subsection considers Lure
systems (1) satisfying the full sector condition (3) which
requires that the nonlinearities γ(z) lie in the complete first
and complete third quadrant. Thus, the nonlinearities are less
growth bounded. This implies that the approach presented in
the following is applicable to a broader system class.
Similar to Lemma 2 the following lemma gives conditions for
the calculation of a stabilizing feedback law for system (1)
and of an upper bound on the cost functional (5).

Lemma 3: Consider the system (1) subject to the full
sector condition (3). Suppose that there exist matrices 0 <

Λ = ΛT ∈ R
n×n and Γ ∈ R

m×n and a constant α ∈ R
+ such

that the LMI
⎡

⎢

⎣

−Δ−ΔT ΛQ
1
2 ΓTR

1
2

Q
1
2Λ αI 0

R
1
2Γ 0 αI

⎤

⎥

⎦
> 0 (26)

and the equality constraint

−HΛ = αGT (27)

are satisfied with Δ = [A B][Λ ΓT ]T . Then for P= αΛ−1 and
K = ΓΛ−1 the following holds:

a. The feedback law u= Kx asymptotically stabilizes the
system (1) under the full sector condition (3).

b. V̄ = xT (t)Px(t) is an upper bound on the infinite
horizon cost functional (5) at time t, where x(t) is the
state of the system (1) at time t.

Proof: By using the same arguments as in the proof of

Lemma 2 we can show that both properties (a) and (b) hold

if the LMI (26) and the equality constraint (27) imply that

the inequality (12) is satisfied. This is clearly the case if we

can show that both the matrix inequality

PA+ATP+PBK+KTBTP+Q+KTRK < 0 (28)
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and the inequality

xTPGγ(z)+ γT (z)GTPx< 0 (29)

are satisfied. Substituting Λ in (27) it follows that the equality
−H =GTP holds. Plugging this into (29) with (1b) we obtain

−zT γ(z)− γT (z)z< 0, (30)

which is clearly satisfied due to the sector condition (3).

Thus, inequality (29) holds. Furthermore, by applying the

Schur complement on (26) and substituting Λ and Γ we

obtain (28). Thus, (26) and the equality constraint (27) imply

satisfaction of (12), which according to the proof of Lemma 2

guarantees that the properties (a) and (b) hold.

With the results of Lemma 3 we can formulate the following
theorem for an NMPC controller for Lure systems satisfying
the full sector condition (3).

Theorem 2: Consider the system (1) with the full sector
condition (3). The NMPC controller given by the repeated
solution of the optimization problem

min
αk,Λk,Γk

αk (31a)

subject to
[

1 xT (tk)
x(tk) Λk

]

> 0, (31b)

⎡

⎢

⎣

−Δk−ΔTk ΛkQ
1
2 ΓTk R

1
2

Q
1
2Λk αkI 0

R
1
2Γk 0 αkI

⎤

⎥

⎦
> 0, (31c)

αkG
T +HΛk = 0 (31d)

[

1 ciΛk+diΓk
(ciΛk+diΓk)

T Λk

]

≥ 0, (31e)

i= 1, . . . ,r,

at the sampling instants tk based on the state x(tk), with Pk =
αkΛ

−1
k and Kk = ΓkΛ

−1
k has the following properties:

a. The optimization problem (31) is convex. Furthermore,
it is feasible at the sampling instant tk+1 if it is feasible
at tk.

b. The solution to the optimization problem (31) mini-
mizes the upper bound V̄k = xT (tk)Pkx(tk) on the cost
functional (5) at each sampling instant tk.

c. If the optimization problem (31) is feasible at t0 = 0,
the control law

u(t) = Kkx(t), t ∈ [tk, tk+1), (32)

asymptotically stabilizes the origin of the system (1)
with the full sector condition (3) and the input and
state constraints (4) are satisfied for all times t ≥ 0.

Proof: The proof uses the results of Lemma 3 and the

same arguments as in the proof of Theorem 1.

The NMPC controller proposed by Theorem 2 overcomes the
convexity problem with respect to τ present in Theorem 1.
However, the relaxed sector condition makes the approach in
general more conservative. Thus, one has to decide for each
specific problem which of the proposed NMPC controllers
is more suitable to satisfy the control task.

IV. SIMULATION EXAMPLE

To illustrate the performance of the controller derived
for the growth bounded sector condition we consider the
dynamics of a flexible link robotic arm (see e.g. [1, 9]) which
are given by the matrices

A =

⎡

⎢

⎢

⎣

0 1 0 0
−48.6 −1.25 48.6 0
0 0 0 1
19.5 0 −16.7 0

⎤

⎥

⎥

⎦

, B=

⎡

⎢

⎢

⎣

0
21.6
0
0

⎤

⎥

⎥

⎦

,

GT =
[

0 0 0 −3.33
]

, H =
[

0 0 1 0
]

(33)

and the nonlinearity

γ(z) = sinz+ z. (34)

To fulfill the sector condition (2) the inequality
(

β z− sin(z)− z
)T (

sin(z)+ z
)

≥ 0. (35)

has to hold. This is the case for all β ≥ 2. In order to
reduce conservativeness for the simulation we have chosen
the smallest possible value β = 2. The constraint set C is
defined by the input constraints −1.5≤ u≤ 1.5 and the state
constraints −π

2 ≤ x1 ≤
π
2 and −

π
2 ≤ x3 ≤

π
2 . The control task

is to steer the robotic arm to the origin with the NMPC
controller derived in Theorem 1. For the simulation we have
chosen the weighting matrices

Q=

⎡

⎢

⎢

⎣

1 0 0 0
0 0.1 0 0
0 0 1 0
0 0 0 0.1

⎤

⎥

⎥

⎦

, R= 0.1. (36)

Off-line calculations have shown that τ = 1 is a suitable
choice to obtain good controller performance. The black
lines in Figure 2 show the simulation results obtained by the
proposed NMPC controller starting from x0 = [1.2 0 0 0]T .
To illustrate the effectiveness of this approach we compare
the results with those obtained when the static control law
calculated at the first sampling instant is applied to the
system without recalculating the feedback matrix. Clearly,
the NMPC controller steers the system to the origin much
faster. The update of the control law allows to exploit
the available input energy more efficiently. This leads to
a more aggressive input trajectory and a faster controller
performance.

V. CONCLUSIONS

In this paper two computationally attractive NMPC con-
trollers for two types of Lure systems, which differ by
the sector condition their nonlinearities satisfy, have been
derived. In both approaches the control law is the solution
to a convex optimization problem based on linear matrix
inequalities that is solved repeatedly at each sampling in-
stant. The obtained solutions minimize an upper bound
on the considered infinite horizon cost functional. If the
optimization problem is initially feasible, both controllers
guarantee closed-loop stability and satisfaction of state and
input constraints. The effectiveness of the presented results
have been illustrated by a simulation of a flexible link robotic
arm.
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Fig. 2. Comparison of the proposed NMPC controller (black solid line) with the static controller calculated at the first sampling instant (gray dashed
line). Four plots on the left part: States x of the robotic arm. Upper right plot: Input u. Lower right plot: Upper bound on the considered cost functional α .
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